Lysophosphatidylcholine-induced elevation of asymmetric dimethylarginine level by the NADPH oxidase pathway in endothelial cells.

نویسندگان

  • Su-Jie Jia
  • De-Jian Jiang
  • Chang-Ping Hu
  • Xiao-Hong Zhang
  • Han-Wu Deng
  • Yuan-Jian Li
چکیده

Recent studies suggested that endothelium is a main source of reactive oxygen species (ROS) and the major source was via NADPH oxidase pathway. Various stimuli including lysophosphatidylcholine (LPC), a major component of oxidized low-density lipoprotein (ox-LDL), can enhance the activity of NADPH oxidase and lead to a marked ROS generation. Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide (NO) synthase (NOS) inhibitor, which is synthesized by protein arginine methyltransferase I (PRMT I) and degraded by dimethylarginine dimethylaminohydrolase (DDAH) in endothelial cells. Much evidence showed that ADMA was closely related to endothelial dysfunction. Our previous study showed that LPC elevated ADMA level in endothelial cells via increasing oxidative stress, but the precise cellular mechanism is not defined yet. The present study was to explore the mechanism of NADPH oxidase in LPC-induced elevation of ADMA. In LPC-treated endothelial cells, the ROS production, cell viability, ADMA and NO levels, the activity of DDAH and expression of PRMT I were detected. Treatment with LPC (10 microg/ml) for 24 h markedly increased intracellular ROS production, the expression of PRMT I, level of ADMA, decreased the concentration of NO and the activity of DDAH. These effects were attenuated by diphenyliodonium, the NADPH oxidase inhibitor. In summary, the present results suggested that LPC-induced elevation of ADMA was due to reduction of DDAH activity and the up-regulation of PRMT expression by stimulation of ROS production via NADPH oxidase pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells

Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...

متن کامل

Mechanism of Cellular Oxidation Stress Induced by Asymmetric Dimethylarginine

The mechanism by which asymmetric dimethylarginine (ADMA) induces vascular oxidative stress is not well understood. In this study, we utilized human umbilical vein endothelial cells (HUVEC) to examine the roles of ADMA cellular transport and the uncoupling of endothelial nitric oxide synthase (eNOS) in contributing to this phenomenon. Dihydroethidium (DHE) fluorescence was used as an index of o...

متن کامل

Asymmetric dimethylarginine and reactive oxygen species: unwelcome twin visitors to the cardiovascular and kidney disease tables.

Plasma levels of asymmetric dimethylarginine or markers of reactive oxygen species are increased in subjects with risk factors for cardiovascular disease or chronic kidney disease. We tested the hypothesis that reactive oxygen species generate cellular asymmetric dimethylarginine that together cause endothelial dysfunction that underlies the risk of subsequent disease. Rat preglomerular vascula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vascular pharmacology

دوره 44 3  شماره 

صفحات  -

تاریخ انتشار 2006